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ABSTRACT

'-’6‘“{“ ‘ } R J. B. McLeod and C. A. Stuart

The paper is concerned with giving sufficient conditions that in

the non-linear _boundary-value problem

u"(x) + {q(x) + G(x,u(x), \) Ju(x) = 0

u(0) ==.0, u(l) =0 or u'(l)=0
there should be no secondary bifurcation, i.e. that, given a branch
of solutions (u,\) bifurcating from the trivial solution, there should
be no further bifurcation on that branch. Sufficient conditions on G
are given which include, for example, Kolodner's problem of the

motion of a heavy rotating string.

AMS(MOS) Subject Classification: 34B15; 47HI5

Key Words: Bifurcation, Non-linear ordinary differential equations,
Non-linear Sturm-Liouville problems, Secondary bifurcation.
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SIGNIFICANCE AND EXPLANATION

We give a typical physical example where the mathematical analysis in this
paper is relevant. The simplest model for the buckling of a rod under an axial
load is the classical Euler theory, in which the buckling load is given by the
eigenvalue of a linear differential equation.

A more realistic model leads to a nonlinear boundary value problem in which
the buckling load is given by the eigenvalue of a linear problem derived from the
nonlinear equation - a bifurcation point. In contrast to the linear theory, the
nonlinear theory also enables us to follow the behavior of the rod after buckling
occurs. Under certain circumstances it is possible for a structure to buckle; then,
when the deformation due to buckling has progressed so far, the structure may buckle
a second time. When the behavior of the system is governed by a second order non-
linear differential equation, the present paper gives conditions under which this

secondary buckling cannot occur.

The responsibility for the wording and views expressed in this descriptive summary

lies with MRC, and not with the authors of this report.




NON-LINEAR STURM-LIOQUVILLE PROBLEMS
WITH NO SECONDARY BIFURCATION

J. B. McLeod & C. A. Stuart
1. Introduction
Let G 0,1) XIRXR- IR be a smooth function and let Gi denote the i-th partial de-
rivative of G . We consider the non-linear eigenvalue problem
u'(x) + a(x)u(x) + u(x) G(x,u(x),\) = 0
u(0) = u(l) 0 3
and simultaneously the problem in which the boundary condition u(l) = 0 is replaced by
u'(l) = 0. We suppose that gx0,1) = IR is a continuously differentiable function,
Since both the function u and the constant \ are unknowns in (1), we regard a solu-
tion of (1) as a pair (u,\) e CZ(O,I) N C'[0,1] X IR. We wish to give conditions on the function

G which will imply that, for any solution (uo, xo) of (1) with u_#® 0, there is a neighbour-

0

hood of (uo,\o) in Cl[o,l] X IR such that all the solutions of (1) lying inside this neighbour-

hood form a single smooth curve which can be parameterized by \ .
A result of this kind can be obtained directly from the implicit function theorem as
follows. Let X be the Banach space consisting of the set {u e Cl[O,l] :u(0) =0} together

with the usual norm for Cl[o,l]. Define an operator A : XX IR- X by

A(u, A )(x) = fl a(x,y)[aly)uly) + u(y)Gly,u(y), \)]dy
0
where g is the Green's function for the problem
-u"(x) = h(x), wO0)=u(l)=0 (respectively u'(l) = 0) .

Let us assume that for each A ¢IR, A(-,\):X- X is a completely continuous (i.e. continuous

and compact) operator. This is certainly the case if q is continuous on [0,1] and G is con-
tinuous on [0,1] X R X IR, but it is also true even if g and G have mild singularities at
x = 0. With this notation, the problem (1) is equivalent to

u 4+ A(u,\) = 0 for (u,\) e XXIR .

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




Supposing that (uo,xo) ¢ XXIR is a solution of (2), we shall be able to invoke the
implicit function theorem to yield the desired conclusion provided that we can show that the

itrear mapping I + Au(uo,x : X- X has a bounded inverse. We use Au(uo,xo) to denote

o
the Fréchet derivative of A at (uo,xo). Since Au(uo,ko) is a compact linear operator (by
the compactness of A), I + Au(uo, \o) has a bounded inverse provided that I + Au(uo, xo;:x-ox
is one-to-one. Proving that I + Au(uo ,xo)zx-o X is one-to-one is equivalent to proving that the
boundary-value problem

v'(x) + q(x)v(x) + v(x){G(x,uo(x),x ) +un(X)G,(x,un(X), M)} = 0 &

v(0) =0, v(l) =0 (respectively v'(l) = 0)

has only the solution v = 0. The aim of the paper is to give conditions on G which ensure
that this is the case for every solution (uo,xo) of (1) such that u°¢ 0.

Of course, we may also consider the same problem for solutions of (2) of the form (0,\).
This is the problem of bifurcation of non-trivial solutions of (1) from the line {(0,A) ¢ X XR:A¢ R}
of trivial solutions. In keeping with what has been said above, bifurcation cannot occur at a
value \ = )\o which is not an eigenvalue of (3) with u
that at the eigenvalues of

" 0. Furthermore it is well-known [1]
v'(x) + q(x)v(x) + v(x) G(x,0,\) =0
v(0) = 0, v(l) = 0 (respectively v'(l) =0)),
bifurcation does indeed occur provided that the transversality condition (d) of Theorem 1.7 of
[1] is satisfied. In fact, in a neighbourhood of the bifurcation point in X X IR, the set of all
solutions of (1) consists of two simple curves which intersect only at the bifurcation point.
One of these curves is a section of the line of trivial solutions and the only trivial solution
on the other curve is the bifurcation point. It is a corollary of our result that, under our
hypotheses, this curve of non-trivial solutions can be continued to infinity in X X IR, Further-
more there is no branching from this curve (i.e. no secondary bifurcation) and the curve can
be parameterized by \ . The conditions under which we establish these results are consider-

ably more general than those formulated previously which seem restricted either to autonomous

e
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equations [2] or to problems with small non-linearities [3).

Our method is to compare (3) withtwo other problems, one being (1) and the other a
specially constructed linear problem the number of nodes of solutions of which can be related
to the number for Ug- The Sturm comparison theorems then give (from each comparison) informa-
tion about the number of nodes of a solution of (3), and if this information is self-contradictory,
we can conclude that (3) has only the trivial solution.

Before giving our result we remark that our method will apply to problems not of the form
(1), for example to problems in which u'(x) appears explicitly in the differential equation., For
this reason we have arranged the proof so as to show what must be done in order to construct the

third comparison problem, and in so doing we show also that our result is more or less the best

possible one obtainable by our methods for problems which have the form (1).

45
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2. The main theorem

Theorem. Suppose that (u ,\ )¢ XX IR is a solution of (1) with u_ # 0. Then the boundary- 3

value problem (3) has only the solution v =0 in X provided that G has the following form:

[ niy)dy
G(x,p,\) = f(x) !‘(pel ,A) for xe¢ (0,1) and p,Ae¢ R (4)

where F:IRXR- R is any C' function such that p Pl(p,\°)< 0 forall p#0, f:(0,1]= R

is any positive Cz function, with f(x) bounded from zero for xe (0,1] and with
1

f x f(x) dx <%, h: (0,1] = R is any Cz solution of the Riccati equation h' - hZ =q in
0

(0,1), with the restriction that h(l) < 0 if we have the boundary condition u'(l)= 0,
1

q: (0,1]= R is any C' function with f x|q(x)|dx < o, and where we have the addi-
tional inequality, 0
% 52 42 f-3/2

-1/2

(th + 314 + 26/2h' >0 throughout (0,1) . (5)

Remark. 1. The conditions allow the functions f, h and q to have singularities at 0. This

is essential because there are relevant examples in which this arises, in particular Example 2

which we discuss later. The singularities can be handled analytically because the boundary .
condition at 0 has the form u(0) = 0; and if we take problem (l) with the boundary condition

u(l) = 0 rather than with the alternative u'(l) = 0, we can allow singularities in f h, and g

at 1 as well. We have not bothered to make this extension.

2. While the theorem is a theorem about the non-existence of non-trivial solutions of

a certain boundary-value problem, the introduction has pointed out the relevance of this for
secondary bifurcation, and it should therefore be remarked that the conditions of the theorem
are sufficient to guarantee that the operator A of the introduction is completely continuous.
This is done in an appendix to the paper, and it will be seen there that the conditions are not
only sufficient but also close to being necessary.

3. The proof and truth of the theorem remain unchanged if we generalize F so as to

allow zeros of Fl(p, \o) for isolated values of p. If f‘l = 0, the problem of course ceases

to be non-linear.
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4. It is possible to construct a theorem in which the inequality prl:p. \O» <0 1is
reversed to p Pl(p,xo) >0 and the inequality (5) is also reversed. The comparisons in the

proof that follows are then reveised and a contradiction can be obtained much as before. We

leave the necessary modifications of statement and proof to the reader.
We make a final remark on generalizations at the end of the proof of the theorem,
5. As a consequence of Remark |, it becomes part of the proof of the theorem to discuss

the singularities and show that they can be handled. We do this in two simple lemmas which

we state now and prove at the conclusion of the proof of the theorem.

Lemma I. Let h be as in the statement of the theorem. Then, as x| 0, either h(x) = o(x'li

X
or [ nndy
h(x) ~ -x'l and xe 1 converges to a finite limit.

Lemma 2. Let wu, Dbe as in the statement of the theorem. Then u, has only a finite number

of zeros in (0,1).

Proof of Theorem. Setting

G(x,p,\) = q(x) + G(x,p,\) for x¢ (0,1) and p,\«¢ R,

we have that u_ satisfies the equation

0
w'(x) + G(x,uo(x),\o)w(x) =0 for 0 <x<1l.
We suppose that v # 0 is a solution of (3) in X and show that this leads to a contradiction.
Since v satisfies the equation

w''(x) + {G(x,uo(x),ko) +uy(x) Gz(x,uo(x),ko)}w(x) =0 for 0<xc<l

and since
lxh ﬁxh

uo(x) Gz(x,uo(x),\o) = f(x)uo(x)e }'l(uu(x)e ,\0) <0
by our hypotheses (with equality only when uo(x) = 0), it follows from the Sturm comparison
theorem that u0 vanishes at least once strictly between any two consecutive zeros of v .

If we have the boundary conditions uo(O) = uo(l) =0 and us has no zeros in (0,1),

this already leads to a contradiction since v will have zeros at 0 and 1.

has n-l zeros in (0,]1) where n >2 and that u_ satisfies

Let us now suppose that u 0

0

=5.




I -
uo(O) = uo(l) = 0. We denote the zeros of Uy by a, where 0 = a, <a R a1 <l. By

<

comparing (3) with another linear problem we shall show that this again leads to a contradiction,

To obtain the desired equation for comparison, let a,p ¢ cz(o,n. and consider, in (0,1),

S—

¢=¢u°+pub.

Then

¢ = a'ug +(2a'+ pug + (a + 28")ug + B ug
} = {a" - (a + 28")G - pG,)uo«r {22' +p" - B G -puo szub .
Hence, provided that

p{a"-(a+zp')é -aél)=a{za'+p"-p5 -puoéz}. (6)

we see that ¢ satisfies the equation

¢"+{§+uoaz- 2'—;-9-:-}¢=0, (7)
provided that p does not vanish in (0,1).
Now the condition (6) can be regarded as a partial differential equation for 5 , tf we
regard the arguments in G, i.e. x and ub = p, as the independent variables and o« and B

as given functions of x . Indeed, it is a first-order linear equation with the general solution

X a

= SRS R P 1 B
G(X;P,ko)-(p) (B) 1 ZP(PG .Xoh (8)

g
where F:IRXIR- IR is an arbitrary function, and we observe that the particular 5 =q+G

—r —

k which arises from G as given in the statement of the present theorem is indeed of the form (8)

if we take

1/2 /2

B = f > a = f-l h. (9)
(We note that @ and B so defined satisfy the conditions so far used in the analysis, that
a,B ¢ C40,1] and B> 0 in (0,1].)

The proof of (8) is just undergraduate mathematics, but for the purposes of the proof of

the present theorem we are in any case interested in the converse,that if G is of the form given

b o




by (8), and in particular if (3 is as given in the statement of the present theorem, then (6)
holds (with @ and B given by (9)) and so ¢ satisfies (7), and this converse is proved just by
differentiating (8). The Sturm comparison theorem can now be applied to compare zeros of v
and ¢ , provided that 2a' + ' is of constant sign, and for o« and B of the form (9), this
is achieved by equation (5), which just states that
2’ 4" >0,

Hence between any two consecutive zeros of ¢ in (0,l) there must lie at least one zero of v.
(This statement has to be suitably interpreted if there are intervals in which 2a' + " = 0, but
we leave this to the reader.)

We are now ready to achieve the required contradiction. We know that Uy has precisely
n-1 zeros in (0,1), and that consequently, from the comparison between uo and v, v has at
most n-2 zeros in (0,1). (For if v has n-l interior zeros at bl" i 'bn-l' then Uy has at

1).) But u' has opposite signs at

0
consecutive zeros of us (it is part of the proof of Lemma 2 that u'o(O) # 0), and so ¢ changes

least one in each of the n intervals (o’bl’(bl'bz)" ie '(bn-l’
sign at least once in each of the intervals (al,az),(az,as), e ’“n-l'” of uo . (Since it is
possible that B(0) = 0, we have to consider the interval (o,al) as a special case.) Thus ¢
has at least n-l zeros in (0,1).

In fact, ¢ has a further zero, either at 0 or in (o,al). There are two cases to con-
sider, depending upon whether h(x) = o(x'l) as x| 0 or h(x)~ -x'l :

In the first case, we can suppose without loss of generality that ub(O) >0, Uy >0 in
(O,al), ub(al) < 0. Then ¢(al) <0, while, as x| 0,

ox) = %0 (hix) ug(x) + up(x)},

which is certainly positive for sufficiently small x if h(x) = O(X-l) as x| 0. Hence ¢

has a zero in (o,al).
1

If h(x)~ -x~" as x| 0, then
-1/2
d(x) = f (%) {h(x) uo(x)+ua(x)}
-1/2 %
= f / (x) {-x l[x up(0) + o(x)] + up(0) + o(l) }

= ofl) s




since f!/¢ s bounded. Hence ¢(0) =0 .

The comparison between v and ¢ now assures us that v has at least n-l zeros in

e T e STV W DO

(0,1), and since we established earlier that v had at most n-2 zeros in (0,1), the required contra-

NP

diction is obtained. 3

has n-l zeros in (0,1), with n>1, and the

We deal finally with the case where Uy

boundary conditions are uo(O) =0, ub(l) = 0. (In the case n =1 the argument that follows has

to be suitably modified and this is left to the end.) We note as before that v has at most

n-2 zeros in (0,1). The function ¢ is constructed as before and has at least one zero in each

of the intervals [o,al), (al,az), v iy ‘an-z’an-l" 1f we can show that ¢ also has a zero in

(an l,l], we can make the comparison with v and obtain a contradiction as before. To show

the existence of this last zero, we suppose without loss of generality that ub( a l’ >0, u 0 >0

in (an_l,l], with ub(l) =0. Then &a_ ) >0 while 1) <0 since h(l) <0, and this gives

the required result.

If n =1, there is no need to introduce the function ¢ . Since uo has no internal zeros,

neither has v , and we may assume uo(x) >0, vix) >0 for xe (0,1). Then

u'd(x) v(x) - v''(x) uo(x) = ug(x) v(x) Gz(x,uo(x),\o )

and on integration

' ' l
[uo(x) v(x) - v'(x) uo(x)]o <. 0,

which contradicts the boundary values for u_,v.

o)
Remark. If we do not assume G of the form (4), it is still possible to consider ¢ =au, + pu'o.

where, a,p are suitable functions of x , and to construct a differential equation for ¢ of the

form

9" +A¢' +B =0,

for functions A,B which depend on XyUgy a,B,G,q. By the standard transformation

-l/?.fAdx
¢ = e vy,

we obtain an equation of the form

Y'+ Cy=0




for & , and this can be used for comparison with the equation for v provided that C satisfies

a certain inequality. This inequality is to be regarded as a conditionon G, but in this degree

of generality seems to be too complicated to be made much of




3. Proof of Lemma |

If z(x) satisfies the equation
2'+qz=0, (10)
then it is a standard result (and easily proved) that h = -z'/z satisfies the Riccati equation
W -hi=gq; an
and, conversely, every solution of the Riccati equation can be obtained in this way. Further,

one solution of (10), z, say, can be obtained by solving the integral equation

X
z = x - [ x-vaw z (t)dt
0
by iteration, the iterative process converging, at least for x sufficiently small, because of

the assumptions on q; and this solution has the asymptotic behaviour as x| 0 that

zl(x) s zi(x) S I

and consequently the corresponding function h satisfies

h(x) ~ S (12)

The full solution of (10) can now be given, at least for x sufficiently small, by the

formula

X
-2
z= l\zl + le fa {zl(t)} dt.,

where A and B are arbitrary constants and & is a fixed positive number sufficiently small

that z) does not vanish in (0,6]. If B=0, then z is a multiple of z, and we have al-

l)
ready seen that then h(x) ~ -x'l . If B# 0, itis an easy calculation, using the asymptotic
behaviour of 2 to check that h(x) = o(x-l), as required by the statement of the lemma.

If h(x) ~ -x-l, then for x sufficiently small we can divide (l1) by h and integrate to

obtain

X X
log h - f h(t)dt = f 9}.‘!‘% dt + constant ,
1 0

the integral on the right existing because of (12) and the conditions on ¢ . The proof of the lemma

is then completed by taking exponentials of both sides and letting x 1 0 .
-10-
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4. Proof of Lemma 2

Since the differential equation satisfied by U, is singular only at 0 , we see that 0
is the only possible limit point for an infinity of zeros of uo, if such exists. Further, since
ug € Cl[o,l], if 0 is such a limit point, then ua(O) = 0. It will therefore be sufficient to show
that ub(O) #0.

Suppose then for contradiction that ub(O) = 0 . Integrating the equation for uo, we have

h
ug(x) = - [* {a(t) + £(t) F(uo(t)el 2Ag) Jugltidt
0

the integral existirng because uo(t) =0(t) as t} 0 and

1
SHtandt <o, [ tlamldt< = .
0 0

(Note that, from Lemma 1, and for te [0,l],
[
1
Jug(t) e | < Kluo(t)/t] <K, ,

for suitable constants KI’KZ‘) If now, for some 6 >0,

M = sup fuyt)],
te [0,8]
then we have
)
M<M [ {Jat)|+ Kfit)) tadt, (13)
0
where ft h
1
K = sup ]F(uo(t) e A s
te [0,1]

and clearly (13) implies M =0 if § is chosen sufficiently small. Hence Uy =0 in {0,8]

and so throughout (0,1].
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5. Two examples
Example 1. Suppose that q = 0. Then we may take h =0 and G then has the form

G(x,p,\) f(x) F(p,2),
where F is an arbitrary smooth function such that p Pl(p,xo) <0 forall p#0, and where f
is any CZ function on (0,1], bounded from zero and with

fle(x)dx_<_ ®

0
and
%f’z- " >0 in (0,1).
A particular case of this result is due to Professor D. Henry. Let f=1 and F have
the form

F(p,N) = a(p,\)/p,
so that the equation under discussion is
u" + g(u,\) = 0,
1f ga(p,\), regarded as a function of p, is CZ[O,I], with
g(0,\) = g(l,\) =0 and g"(p,\)< 0 for 0<p<l,

and if we are interested in solutions u for which 0 <u<1, then, for 0 <p<l,

o'(p,n) - HRAL

P Fi(p,N)

- %{pg'(p,x) - a(p,N)}

n

€ 9"(€,N/p (0<¢<p)
<o,
which is the required condition on F .

Example 2. Suppose again that q = 0. We may take h(x) = -x'l to satisfy the required

Riccati equation, and it is easily checked that (5) is satisfied if we take f(x) = x'l. A pos-

sible choice for F satisfying the requisite conditions is

F(t,n) = A+ t8)71/2

Yo R0,
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This leads to

1 X A
X +l:’z/xz)ll 2 (2 +pz)l/ 2

G(x,pP,\) =

and the corresponding equation is

u'' + Au )

(xz + uZ)l 2

which has been discussed by Kolodner '[4] as a model for the motion of a rotating string.

Appendix

Here it is our object to prove that under the conditions of our theorem the operator
A: X X R = X, defined in the introduction, is completely continuous.

Let

1
Lu(x) = [ g(x,y) u(y)y ,
0

where g is the Green's function defined in the introduction. By the Ascoli-Arzela theorem,

it is easy to check that L: L'(0,1) - X is a compact linear operator. For u e X, let
Q(u) (x) = a(x) u(x) for x>0
and
R(u, A) (x) = G(x, u(x), \) u(x) for x>0 .
Then it will be sufficient to prove that Q: X - L'(0,1) and R: X XR - L'(0,1) are bounded
and continuous.

Now, for ue X,

< sup Juwl ,
0<x<1 Oixil

and so

1 1
[ law U(x)ldxf_{ sup Iu'(x)l}f xlag lax
0

0<x<1

0




- el

proving that Q: X - L'(0,1) is a bounded linear operator.

th [ ;

“ Also, from Lemma l, xe 1 is a continuous function of x on (0,1), and lim xe
x40

X

exists. Thus % 2

[ h
1
N(u)(x) = u(x) e X
u f 4

defines a bounded linear operator from X into C[0,1], and consequently F(u(x)e 1 , )

"defines a bounded and continuous mapping of X XR into C[0,1]. Setting M(u)(x) = f(x) u(x)
for x > 0 and repeating the argument given for Q, we see that M: X - L'(0,1) is a bounded

linear operator. Since

G(x, u(x), A) u(x) = M(u)(x) F(u(x) e » N,

we deduce R: X xR - L'(0,1) is bounded and continuous, and the required result is proved.

O R e NS
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